In Silico Analysis of Cell Cycle Synchronisation Effects in Radiotherapy of Tumour Spheroids

نویسندگان

  • Harald Kempf
  • Haralambos Hatzikirou
  • Marcus Bleicher
  • Michael Meyer-Hermann
چکیده

Tumour cells show a varying susceptibility to radiation damage as a function of the current cell cycle phase. While this sensitivity is averaged out in an unperturbed tumour due to unsynchronised cell cycle progression, external stimuli such as radiation or drug doses can induce a resynchronisation of the cell cycle and consequently induce a collective development of radiosensitivity in tumours. Although this effect has been regularly described in experiments it is currently not exploited in clinical practice and thus a large potential for optimisation is missed. We present an agent-based model for three-dimensional tumour spheroid growth which has been combined with an irradiation damage and kinetics model. We predict the dynamic response of the overall tumour radiosensitivity to delivered radiation doses and describe corresponding time windows of increased or decreased radiation sensitivity. The degree of cell cycle resynchronisation in response to radiation delivery was identified as a main determinant of the transient periods of low and high radiosensitivity enhancement. A range of selected clinical fractionation schemes is examined and new triggered schedules are tested which aim to maximise the effect of the radiation-induced sensitivity enhancement. We find that the cell cycle resynchronisation can yield a strong increase in therapy effectiveness, if employed correctly. While the individual timing of sensitive periods will depend on the exact cell and radiation types, enhancement is a universal effect which is present in every tumour and accordingly should be the target of experimental investigation. Experimental observables which can be assessed non-invasively and with high spatio-temporal resolution have to be connected to the radiosensitivity enhancement in order to allow for a possible tumour-specific design of highly efficient treatment schedules based on induced cell cycle synchronisation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of combination effects of 2- methoxyestradiol and methoxyamine on IUdRinduced radiosensitization in glioma spheroids

Background: Glioblastoma is the most common and most malignant cancer of central nervous system. Targeted radiotherapy is an effective method toward its treatment. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue known to be effective as a radiosensitizer in human cancer therapy. In this study we have evaluated the combination effects of 2-Methoxyestradiol, an inhibitor of ...

متن کامل

Evaluation of combination effects of radiotherapy, hyperthermia and curcumin on glioma spheroids

Glioblastoma is most common and most aggressive cancer of brain. for treatment surgery is first selection and radiation therapy then chemotherapy. The median survival of Patients with GBM is less than a year after diagnosis. Glioblastoma is basically resistant to common cancer treatments. today to improve the response of patients to treatment, a number of strategies such as the use of radiation...

متن کامل

بررسی میزان حساس‌کنندگی پرتوی Iudr در مدل کشت اسفرویید از سلولهای گلیوما به روش

    Background & Aim: In vitro experiments and in vivo studies have revealed that radiosensitizers in radiation therapy may serve as powerful tools in the treatment of glioma cancers. Many cell lines, under some specific conditions will aggregate and grow to form multicellular structures called spheroid. Thses spheroids resemble in vivo tumor models in several aspects. Therefore studying growth...

متن کامل

Simulating growth dynamics and radiation response of avascular tumour spheroids - model validation in the case of an EMT6/Ro multicellular spheroid

The goal of this paper is to provide both the basic scientist and the clinician with an advanced computational tool for performing in silico experiments aiming at supporting the process of biological optimisation of radiation therapy. Improved understanding and description of malignant tumour dynamics is an additional intermediate objective. To this end an advanced three-dimensional (3D) Monte-...

متن کامل

In silico modelling of a cancer stem cell-targeting agent and its effects on tumour control during radiotherapy

Head and neck cancers (HNC), like most solid tumours, contain a subpopulation of cancer stem cells (CSC) that are commonly responsible for treatment failure. Conventional therapies are unsuccessful in controlling CSCs, thus novel, targeting therapies are needed. A promising agent is ATRA (All-trans-retinoic acid) that was shown to induce CSC differentiation, cell cycle redistribution and CSCs r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013